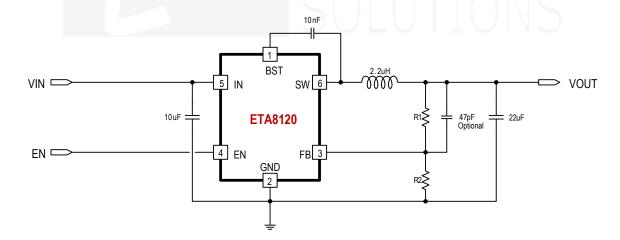


18V, 2A, High Efficiency Synchronous Step-Down Converter in SOT23-6

DESCRIPTION

ETA8120 is a wide input range, high-efficiency and high frequency DC-to-DC step-down switching regulator, capable of delivering up to 2A of output current. It adopts an Adaptive COT control scheme that enables very fast transient response and provides a very smooth transition when the output varies from light load to heavy load. During light load, ETA8120 goes into a PFM mode that saves switching loss achieving high efficiency. The adaptive COT control also maintains a constant switching frequency across line and load.

ETA8120 is available in SOT23-6 package.

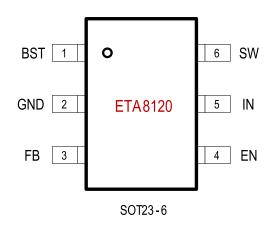

FEATURES

- Wide Input Range: 4.5V-18V
- Adaptive COT Control
- Ultra-fast load transient response
- High Efficiency PFM mode at light load
- High Efficiency Synchronous operation
- No load lq 177uA
- Low Rdson Internal power FETs
- Capable of Delivering 2A
- No External Compensation Needed
- Thermal Shutdown and UVLO
- Available in SOT23-6 Package

APPLICATIONS

- LCD TV
- Set Top Box
- xDSL Modem

TYPICAL APPLICATION



 $Vout = \frac{R1 + R2}{R2} \times 0.6(V)$

ORDERING	PART No.	PACKAGE	TOP MARK	Pcs/Reel
	ETA8120S2G	SOT23-6	CM <u>YW</u>	3000
INFORMATION				

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

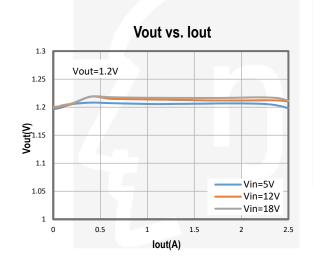
(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

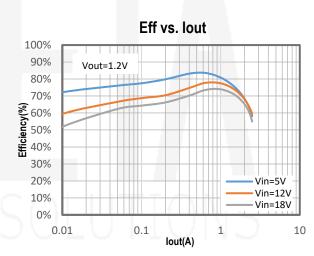
IN, EN Voltage			-0.3V to 24V
SW Voltage0.3V (-5V for <	<10nS) to	o 19V (23\	/ for <10nS)
BST Voltage		–0.3	V to SW+6V
FB Voltage			0.3V to 6V
Operating Temperature Rang	e	4	0°C to 85°C
Storage Temperature Range		55	°C to 150°C
Thermal Resistance	θ_{JA}	$\theta_{\sf JC}$	
SOT23-6	.180	90	°C/W
Lead Temperature (Soldering	10sec)		260°C

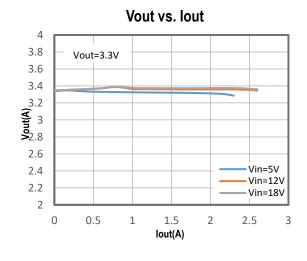
ELECTRICAL CHARACTERISTICS

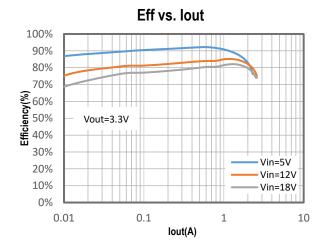
 $(V_{IN} = 12V, V_{OUT} = 3.3V, unless otherwise specified. Typical values are at T_A = 25°C.)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range		4.5		18	V
Input UVLO	Rising		4.05		V
Input Supply Current	no switching		210		μΑ
Input Shutdown Current			7	14	μΑ
FB Voltage		0.588	0.6	0.612	V
FB Input Current			0	0.05	μΑ
Switching Frequency			600		KHz
Maximum Duty Cycle			90		%
Short Circuit Hiccup Time	On Time	T	2		mS
Short Circuit Hiccup Time	Off Time		6		mS
FB Hiccup Threshold			0.2		V
High Side Switch On Resistance			160		mΩ
Low Side Switch On Resistance			95		mΩ
High Side Current Limit			4.2		Α
SW Leakage Current	IN=SW=12V			10	μΑ
EN Rising Threshold	Rising,		1.5		V
EN Falling Threshold	Falling		1.3		V
EN Input Current	V _{EN} =2V		1		uA
Thermal Shutdown	Rising, Hysteresis =45°C		170		°C

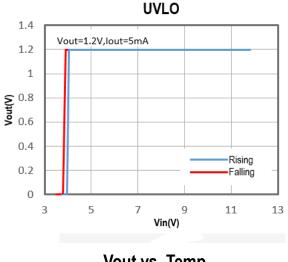


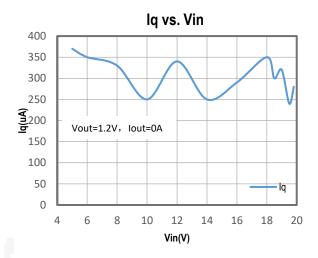

PIN DESCRIPTION

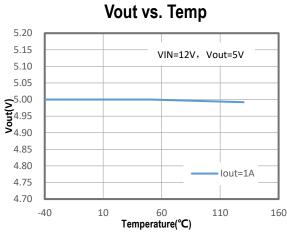

PIN#	NAME	DESCRIPTION
1	BST	Bootstrap pin. Connect a 10nF capacitor from this pin to SW
2	GND	Ground
3	FB	Feedback Input. Connect an external resistor divider from the output to FB and GND to set V _{OUT}
4	EN	Enable pin for the IC. Drive this pin high to enable the part, low or floating to disable.
5	IN	Supply Voltage. Bypass with a 10µF ceramic capacitor to GND
6	SW	Inductor Connection. Connect an inductor Between SW and the regulator output.

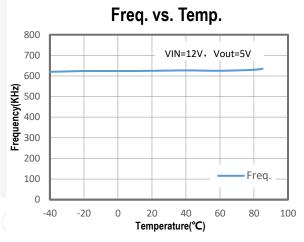

TYPICAL CHARACTERISTICS

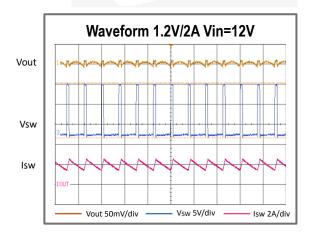
(Typical values are with Cff=47pF, at T_A = 25°C unless otherwise specified.)

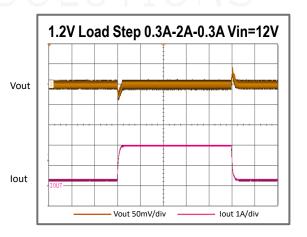


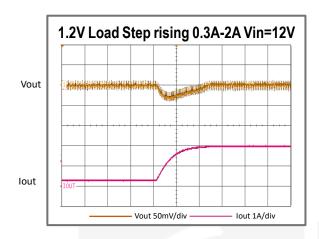


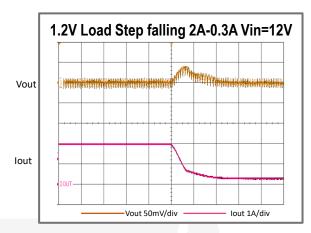


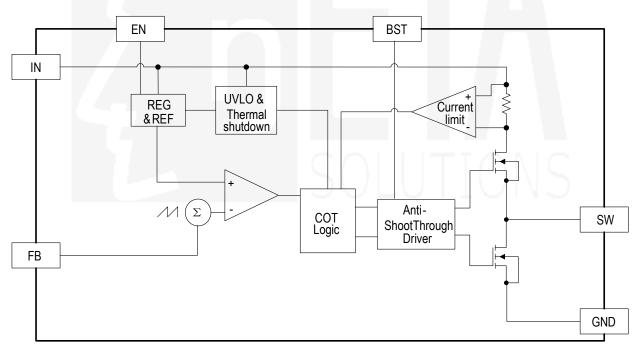

TYPICAL CHARACTERISTICS (cont'd)


(Typical values are with Cff=47pF, at T_A = 25°C unless otherwise specified.)








TYPICAL CHARACTERISTICS (cont'd)

(Typical values are with Cff=47pF, at T_A = 25°C unless otherwise specified.)

FUNCTIONAL BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The ETA8120 is a synchronous buck regulator ICs that integrates the adaptive COT control, top and bottom switches on the same die to minimize the switching transition loss and conduction loss.

ETA8120 is a wide input range, high-efficiency and high frequency DC-to-DC step-down switching regulator, capable of delivering up to 2A of output current. It adopts an Adaptive COT control scheme that enables very fast transient response and provides a very smooth transition when the output varies from light load to heavy load. It compares the sum of the FB voltage and a ripple voltage that mimics the voltage due to the output ESR and capacitance. The constant-on-time timer varies with line to achieve relative constant switching frequency across line.

Light Load Operation

Traditionally, a fixed constant frequency PWM DC-DC regulator always switches even when the output load is small. When energy is shuffling back and forth through the power MOSFET, power is lost due to the finite Rdson of the MOSFET and parasitic capacitances. At light load, this loss is prominent and efficiency is therefore very low. ETA8120 goes into a power save mode during light load, thereby extending the range of high efficiency operation.

Enable

EN is a digital control pin that turns the ETA8120 on and off. Drive EN High to turn on the regulator, drive it Low to turn it off. An internal $1M\Omega$ resistor from EN pin to GND allows EN to float to shut down the chip. Connecting the EN pin through a pull up resistor or shorted EN to IN will automatically turn on the chip whenever plug in IN.

Over Current Protection and Hiccup

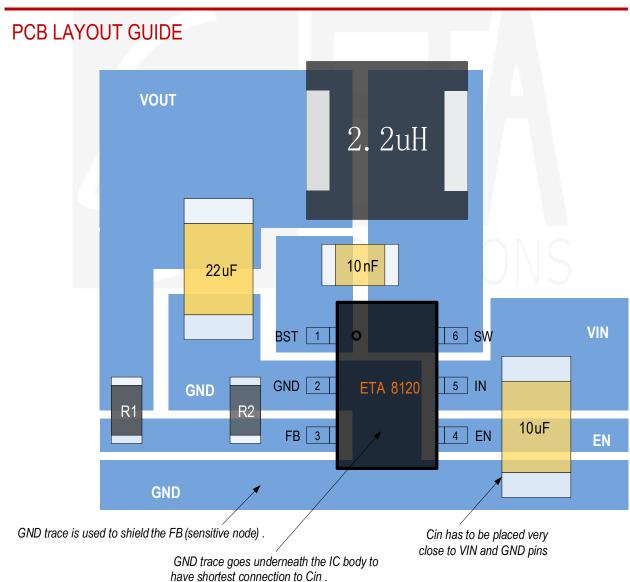
ETA8120 has a cycle-by-cycle over current limit for when the inductor current peak value is over the set current limit threshold. When the output voltage drop until FB falls below UV threshold (0.2V), the ETA8120 will enter hiccup mode. It will turn off the chip immediately for 6mS. After that, it will try to re-starts as normal for 2mS. After 2mS, if FB is still below UV threshold, then the chip enters hiccup mode again. If FB is higher than UV threshold, it will enter the normal mode.

Over-Temperature Protection

Thermal protection disables the output when the junction temperature rises to approximately 150°C, allowing the device to cool down. When the junction temperature cools to approximately 110°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting the device from damage as a result of overheating.

APPLICATION INFORMATION

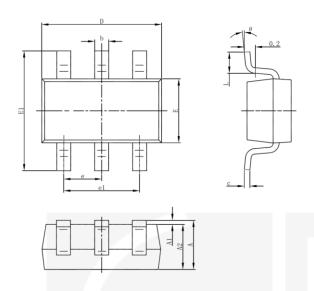
External Output Voltage Setting

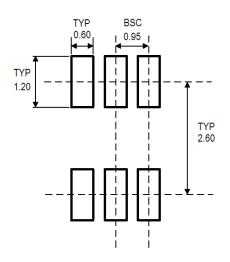

In external Output Voltage Setting Version selected, the ETA8120 regulator is programmed using an external resistor divider. The output voltage is calculated using below equation.

$$V_{OUT} = V_{REF} \times (1 + \frac{R_1}{R_2})$$

Where: VREF =0.6V typically (the internal reference voltage)

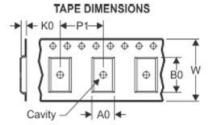
Resistors R2 has to be between 1kOhm to 70KOhm and thus R1 is calculated by following equation.


$$R_1 = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R_2$$



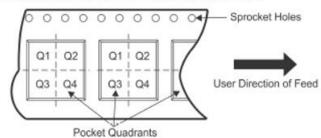
PACKAGE OUTLINE

Package: SOT23-6


RECOMMENDED LAND PATTERN

Sumb a l	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION



A0	Dimension d	esigned to	accommodate	the	component width

B0 Dimension designed to accommodate the component length

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ETA8210S2G	SOT23-6	6	3000	180	9.5	3.17	3.23	1.37	4	8	Q3

K0 Dimension designed to accommodate the component thickness

W Overall width of the carrier tape

P1 Pitch between successive cavity centers