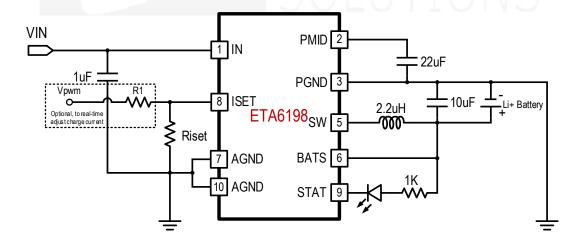


32V Input Standoff Voltage, 2.5A Switching Mode Battery Charger Ultra-Low 1uA Quiescent Current at BAT

DESCRIPTION

ETA6198 is a high efficiency, switching Li-Ion battery charger capable of delivering up to 2.5A of charging current to the battery. For charging, it uses a proprietary control scheme that eliminates the current sense resistor for conventional constant current control, maximizing efficiency, reducing charging time and reducing costs. An OVP function protects the IC itself and its downstream system against input voltage surges. With this OVP function, the IC can stand off input voltage as high as 32V, making it an ideal solution for industrial applications.

ETA6198 is suitable for charging a 4.35V Li-ion battery. And ETA6198 is in DFN3x3-10 package.


FEATURES

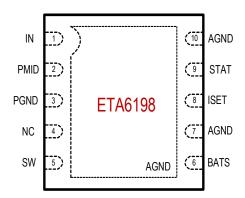
- Switching Charger
- Ultra-Low 1uA Quiescent Current at BAT
- 32V Input Standoff Voltage
- Input Over Voltage Protection
- 60ns Fast OVP Transient Response
- Up to 94% Efficiency
- Up to 2.5A Max Charging Current
- No-Battery detection
- No External Sense Resistor
- DFN3x3-10 Package
- RoHS Compliant

APPLICATIONS

- Tablet, MID
- Smart Phone

TYPICAL APPLICATION

ORDERING PART No. PACKAGE TOP MARK Pcs/Reel


ETA6198D3K DFN3x3-10 ETA6198 5000

YWWXL

PIN CONFIGURATION

Top View

DFN3x3-10

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

0.3V to 32V
0.3V to 6V
Internally limited
40°C to 85°C
-55°C to 150°C
°C/W
260°C
2KV

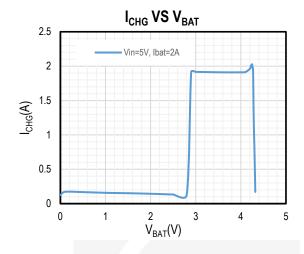
ELECTRICAL CHARACTERISTICS

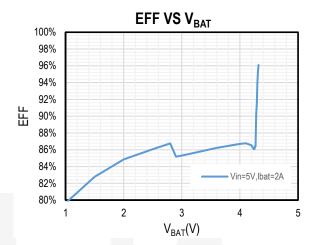
(V_{IN} = 5V, unless otherwise specified. Typical values are at T_A = 25°C.)

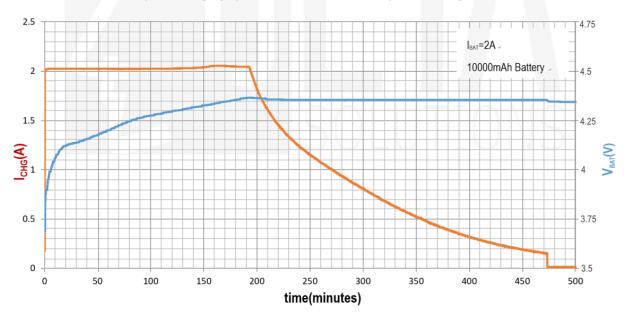
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT					
Input Standoff Voltage		32			V
Input Range		4.5		5.5	V
Input UVLO Voltage	Rising, Hys=500mV		4.5		V
Input OVP Voltage	Rising, Hys=320mV	5.89	6.08	6.27	V
VPMID(V _{HOLD})	V _{HOLD} =4.53V		4.53		V
	Switching	-	5	1	mA
Input Operation Current	No Switching		900		uA
OVP					
Switch RDSON	V _{IN} =5V, I _{OUT} =1A, 25 °C		45	50	mΩ
Discharge Resistance			197		Ω
Tpower-on	Power ON delay		20		ms
BATTERY CHARGER					
Battery CV Voltage	I _{BAT} =0mA, default	4.309	4.309 4.35 4.391		
Charger Restart Threshold	From DONE to Fast Charge		160		mV
Battery Pre-Condition Voltage	V _{BAT} Falling, Hys=250mV		2.9		V
Pre-Condition Charge Current			200		mA
Quiescent Current at BAT	V _{BAT} =3.6V, Input float		1		uA
Fact Charge Current	R _{ISET} =82KΩ		2		Α
Fast Charge Current	R _{ISET} =150KΩ		1.2		Α
Charge Termination Current			130		mA

ETA6198

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS			
Charge Termination Blanking time			16		S			
Highside Pmos Rdson	Isw=500mA		120		mΩ			
Lowside Nmos Rdson	Isw=500mA		100		mΩ			
ISET								
ISET Voltage	Normal Charging		8.0		V			
ISET Voltage	Stop Charging	1			V			
THERMAL PROTECTION								
Charging Thermal Regulation			0.5		00			
threshold			85		°C			
Thermal Shutdown	Rising, Hys=20°C		150		°C			


PIN DESCRIPTION


PIN#	NAME	DESCRIPTION
1	IN	Input pin. Bypass with a 1uF capacitor to GND.
2	PMID	Connection point between internal OVP and charger. Bypass with a 22uF ceramic
		capacitor from PMID to GND. This capacitor should be close to the PMID pin.
3	PGND	Power Ground pin
4	NC	No Connection
5	SW	Switching Pin. Connect with an inductor between this pin and positive terminal of
<u> </u>	SVV	battery
6	BATS	Battery Voltage sense pin. Connect to the battery positive terminal with a separate
		sensing wire to avoid voltage drop to achieve accurate battery CV charging
8	ISET	Charging Current setting pin. Connect a resistor between this pin and analog
O	ISET	ground to set the current level.
9	STAT	Charge status indication pin. When in charging, STAT is pulled low. And STAT
9	SIAI	become high-impedance when charging is completed.
7,10/	AGND	Analog Ground
Exposed pad	AGND	Analog Ground.


TYPICAL CHARACTERISTICS

(V_{IN} =5V, T_A =25 $^{\circ}$ C, unless otherwise specified)

Complete charging cycle of a 10000mAH battery at 2A charge current

FUNTIONAL DESCRITION

ETA6198 is a switching Li-lon battery charger capable of delivering up to 2.5A of charging current to the battery. With OVP function, the IC can stand off input voltage as high as 32V, making it an ideal solution for industrial applications. It features pre-charging, fast charging(CC) and constant voltage(CV) charging, end-of charging termination, and autorecharge. Charge current can be set by an external resistor connecting to ISET pin, and charge status is output by STAT pin.

CC/CV Regulation Loop

There are CC/CV regulation loops built in ETA6198, with regulates either current or voltage as necessary to ensure fast and safe charging of the battery. In a normal charge cycle, this loop regulates the current to the value set by the external resistor at the ISET pin. Charging continues at this current until the battery cell voltage reaches the termination voltage. At this point, the CV loop takes over, and charge current is allowed ti decrease as necessary to maintain charging at the termination voltage.

Precondition Charge

A new charging cycle begins with the precondition state, and operation continues in this state until V_{bat} exceeds the precondition threshold voltage. When operating in precondition state, the cell is charged at 200mA. Once V_{bat} reaches the precondition threshold voltage, the state machine jumps to the fast charge state.

Fast Charge

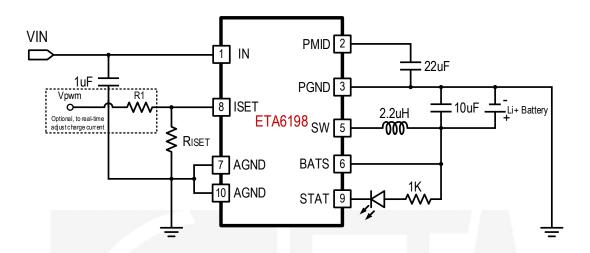
If battery voltage is above preconditioning threshold, buck converter chargers battery with constant current. In fast charge state, the ETA6198 charges at the current set by external resistor connected at ISET pin. For example, a 2A fast charge current can be achieved by

setting the resistor to be 82K. During a normal charge cycle, fast charge continues in CC mode until V_{bat} reaches the charge termination voltage, at which point the ETA6198 enters into top off state.

Top off

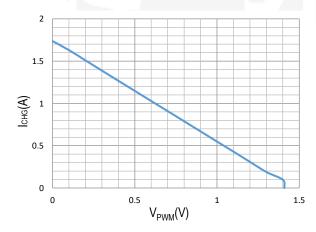
With the battery voltage approaches the end of charge (EOC) voltage (4.35V, preset internally), charge current decreases as charging continues. In the top off state, the cell is charged in constant voltage (CV) mode. During a normal charging cycle, charging proceeds until the charge current decreases below 130mA, the EOC threshold. And then, the state machine terminates the charge cycle and jumps to the EOC state.

End of charge

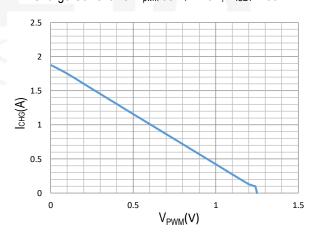

When charge current decreases to 130mA, the buck converter ceases and keep monitoring the battery voltage.

Recharge

When battery voltage drops by 160mV below the EOC voltage, the Buck converter is turned on again, and restart the constant current charge cycle.

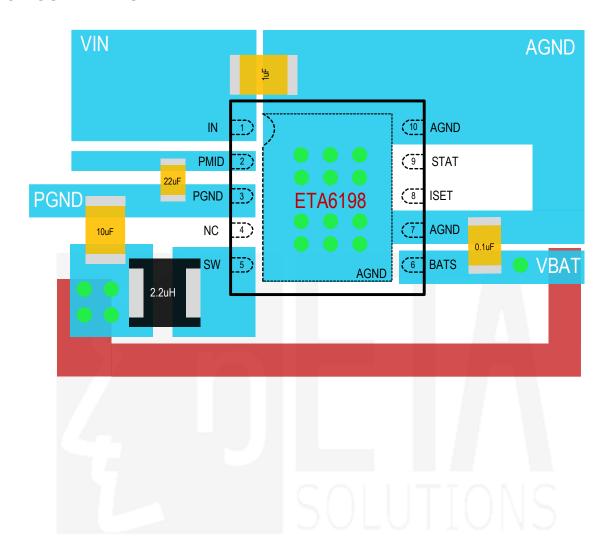


ADJUSTING CHARGE CURRENT by PWM VOLTAGE



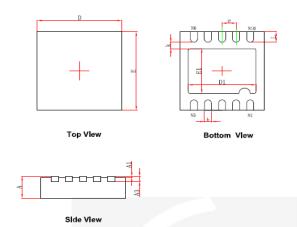
As given by above application circuit, one can real-time adjust the charge current by a PWM signal with different duty-cycle. The V_{pwm} is the RC filtered voltage of the PWM signal, and it will change linearly with the duty-cycle of the PWM signal. Followings are 2 examples of charge current's relationship to V_{pwm} . Please contact ETA engineers if one wants to have specific real-time charge current setting, the choosing of R_1 and R_{ISET} value will be provided quickly.

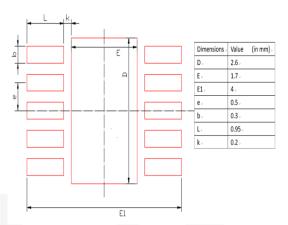
Charge Current Vs. Vpwm at R1=200K, Rset=160K



Charge Current Vs. Vpwm at R1=220K, RISET=130K

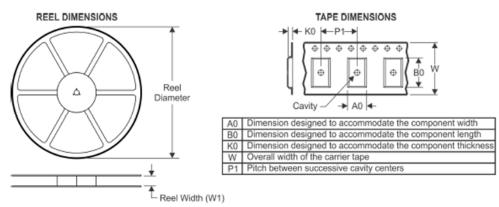
PCB GUIDELINES




7

PACKAGE OUTLINE

Package: DFN3x3-10



RECOMMENDED LAND PATTERN

Cumbal	Dimensions I	n Millimeters	Dimension	s In Inches		
Symbol	Min.	Max.	Min.	Max.		
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035		
A1	0.000	0.050	0.000	0.002		
A3	0.203	REF.	0.008	REF.		
D	2.924	3.076	0.115	0.121		
E	2.924	3.076	0.115	0.121		
D1	2.300	2.500	0.091	0.098		
E1	1.600	1.800	0.063	0.071		
k	0.200	OMIN.	0.008	BMIN.		
b	0.200	0.300	0.008	0.012		
е	0.500	TYP.	0.020	TYP.		
L	0.324	0.476	0.013	0.019		

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant	
ETA6198D3K	DFN3×3-10	10	5000	330	12.4	3.35	3.35	1.13	8	12	Q1	