

2.5A, 3MHz Switching Charger with Dynamic Power Path Management

DESCRIPTION

ETA6003 is a switching Li-lon battery charger with dynamic power-path control and input current limiting. When a battery is connected, depending on the battery voltage, the DC-DC switching regulator either preconditions, fast-charges the battery or just regulates a system voltage (V_{SYS}) to a preset voltage. It does not require an external sense resistor for current sensing. The charging current is determined by programming ISET1 or ISET2 pin, depending on the state of the USB_DET. If USB_DET is low, indicating a valid AC adapter input is present, the charge current is set by ISET1; otherwise, it is set by ISET2. When the battery voltage reaches the termination voltage i.e., 4.2V, the charging path disconnects SYS to BATT. The ETA6003 also includes a dynamic power path when the SYS load current exceeds current limit of the DCDC regulator internally set, the SYS voltage falls below VBATT, ETA6003 turns on the power-path to supplement the system load through the battery.

FEATURES

- Switching Charger with Power Path Management
- Up to 95% DC-DC Efficiency ٠
- 50mΩ Power Path MOSFET ٠
- Up to 2.5A Max charging current ٠
- Instant on with a dead Battery or no Battery ٠
- No battery detection ٠
- No External Sense resistor ٠
- Programmable USB and AC IN Charging Current
- ٠ **RoHS** Compliant

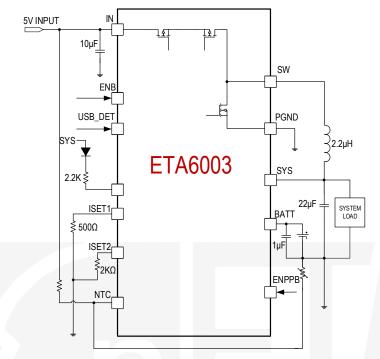
APPLICATIONS

- Tablet, MID
- Smart Phone
- Power Bank

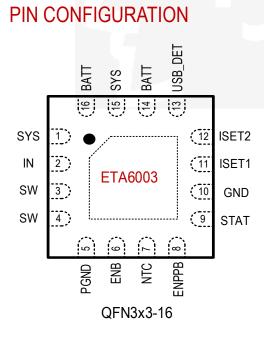
ORDERING INFORMATION

PART No. ETA6003Q3Q PACKAGE QFN3X3-16

TOP MARK Pcs/Reel 5000


ETA6003

YWWPL


www.etasolution.com

TYPICAL APPLICATION

2A Switching Charger with Dynamic Power Pat

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

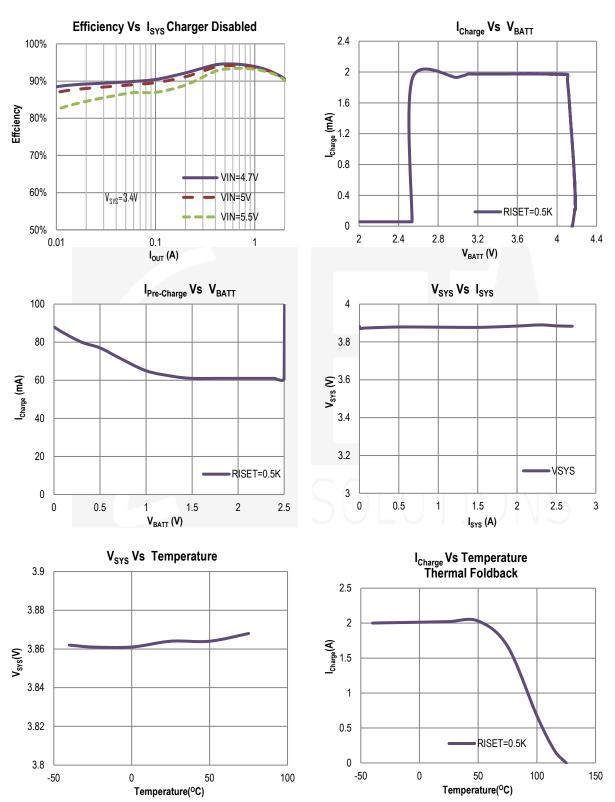
IN, BATT Voltage	–0.3V to 6V
All Other Pin Voltage	VIN-0.3V toVIN+0.3V
SW,SYS,BATT to ground current.	Internally limited
Operating Temperature Range	–40°C to 85°C
Storage Temperature Range	–55°C to 150°C
Thermal Resistance	θ _{JA}
QFN3X3-16	

ELECTRICAL CHARACTERISTICS

(V_IN = 5V, unless otherwise specified. Typical values are at TA = 25° C.)

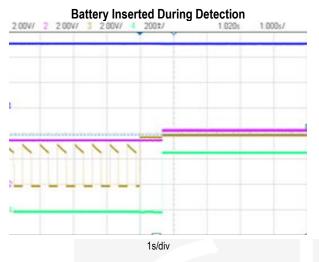
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IN INPUT					
INPUT Range		4.4		5.5	V
INPUT UVLO	Rising, Hys=500mV		3.9		V
INDUT Operating Current	Switcher Enable, Switching		5		mA
INPUT Operating Current	Switcher Enable, No Switching		70		μA
BATT to INPUT leakage Current	Input Floating		0	5	μA
Vhold	When VIN drop to Vhold, then reduce	4.5			V
VIIOIU	DC-DC current limit		4.0		V
DC-DC and SYS OUTPUT					
VSYSMIN	I _{SYS} =1A, Default		3.6		V
VSYSMAX			4.5		V
Load Regulation			40		mV/A
Line Regulation	V _{IN} =4.75 to 5.25V		0.04		%/V
Switching Frequency			3		MHz
Max duty		100			%
HIGHSIDE MOS RDSON	I _{SW} =500mA		100		mΩ
LOWSIDE MOS RDSON	I _{sw} =500mA	60			mΩ
HIGHSIDE Current limit		3.5			Α
SYS UVLO	Falling, Hys=200mV	2.25			V
Thermal Shutdown	Rising, Hys=30°C		160		٥C
POWER PATH Management		1	~	1.0	
BATT TO SYS RDSON	50		50		mΩ
BATTERY CHARGER	JOLU		\cup	\sim	
Battery CV voltage	I _{BAT} =0mA, default	4.16	4.2	4.24	V
Charger Restart Threshold	From DONE to FastCharge	-150			mV
Battery Pre-condition Voltage	V _{BAT} Rising Hys=180mV	2.9			V
Pre-Condition Charge Current		100			mA
AC Fast Charge Current	R _{ISET1} =500Ω, USB_DET= low	2		٨	
	Icharge=1V*1000/R _{ISET1}				A
USB Charge Current	R_{ISET2} = 2K Ω , USB_DET = high	0.5		А	
	Icharge=1V*1000/R _{ISET2}				
Pre-condition Timer			120		min
Fast-Charge Timer			960		min
EOC current	Percent of the fast charge current		10%		
THERMISTOR MONITOR					
NTC Threshold, Cold	Charger Suspended		76.5		%V _{IN}
NTC Threshold, Hot	Charger Suspended		35		%V _{IN}

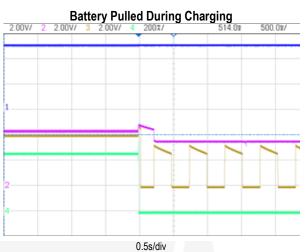
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
NTC Threshold Hysteresis			1.5		%V _{IN}
NTC Disable Threshold			100		mV
NTC Input Leakage			0		μA
LOGIC INPUT, STATS					
ENB, ENPPB Logic Input High		1.6			V
ENB, ENPPB Logic Input Low				0.3	V
STAT Output Low Voltage	I _{STATS} =10mA			0.2	V

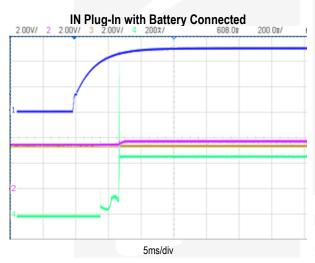

PIN DESCRIPTION

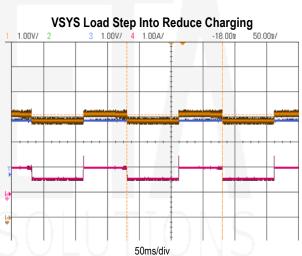
PIN #	NAME	DESCRIPTION
1,15	SYS	System Voltage Pin. It is also the Switching regulator's output pin. Connect an
		inductor and capacitor to form the output filter
2	IN	Input pin. Can be connected to an AC adaptor or a USB charger output. Bypass with
	IIN	a 10µF capacitor each to GND and PGND
3,4	SW	Switching node of the Switching Regulator. Connect a $1\mu H$ to $2.2\mu H$ inductor from this pin to SYS
5	PGND	Power Ground. Bypass with a $10 \mu F$ capacitor to IN with a shortest possible trace
6	ENB	Active Low Enable pin. Tie this pin low to enable the Charging, tie high to disable Charging, while still keeping powerpath from BATT to SYS
7	NTC	Thermistor input
8	ENPPB	Shipping mode enable Pin. Tie to GND to enable power path from BATT to SYS, tie
		to BATT, to disable this path thereby enabling shipping mode to save power to extend
		battery life.
9	STATS	Status pin for Charging status indications. An open drain device capable of driving
		10mA current
10	GND	Analog Ground Pin. Bypass with a $10\mu F$ capacitor to IN
11	ISET1	AC Fast Charge Current set pin for AC input. Connecting a Resistor between ISET1
		to GND This sets the fast charge current value for AC adapter when USB_DET is
		low.
12	ISET2	USB Charge Current set pin for USB input. Connecting a Resistor between ISET2 to
		GND This sets the charge current value for USB input when USB_DET is high.
13	USB_DET	Charge current selecting input. Pull this pin low if an AC adapter is connected and
		select fast charging current to be set by ISET1. And set this pin high if a USB input is
		connected and select USB charging current to be set by ISET2. It is default low.
14,16	BATT	Battery pin. Connect a Battery to this pin

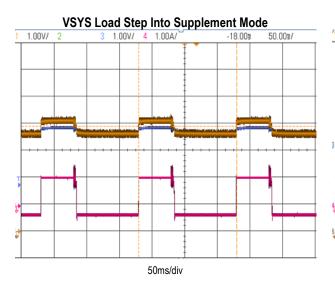
TYPICAL CHARACTERISTICS

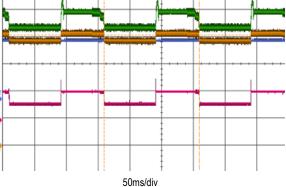

(Typical values are at T_A = 25°C unless otherwise specified.)



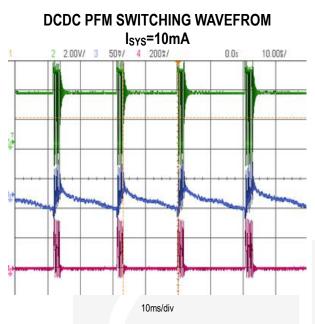


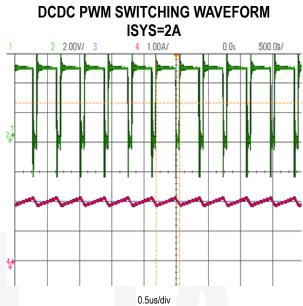

TYPICAL CHARACTERISTICS cont'd

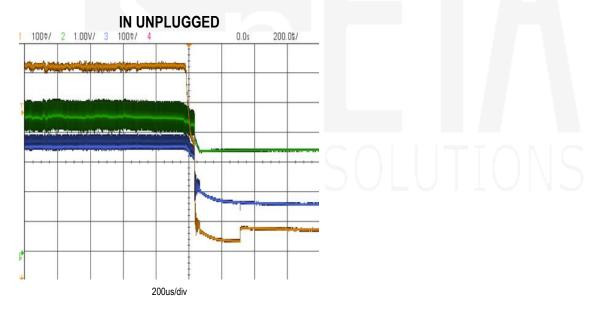

(Typical values are at T_A = 25°C unless otherwise specified.)



VSYS Load Step Into IN DPPM Mode, IIN LIMIT=0.5A

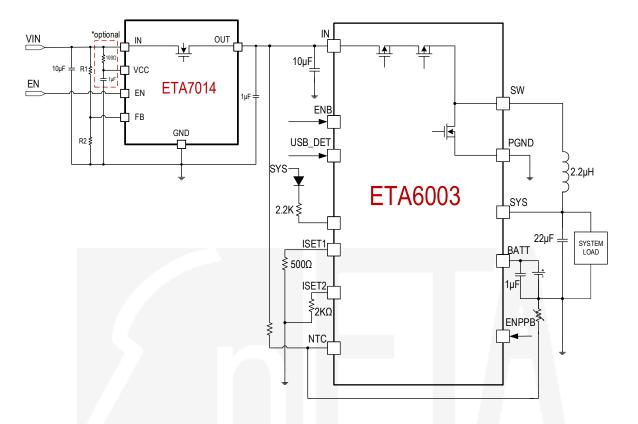



www.etasolution.com



TYPICAL CHARACTERISTICS cont'd

(Typical values are at T_A = 25°C unless otherwise specified.)



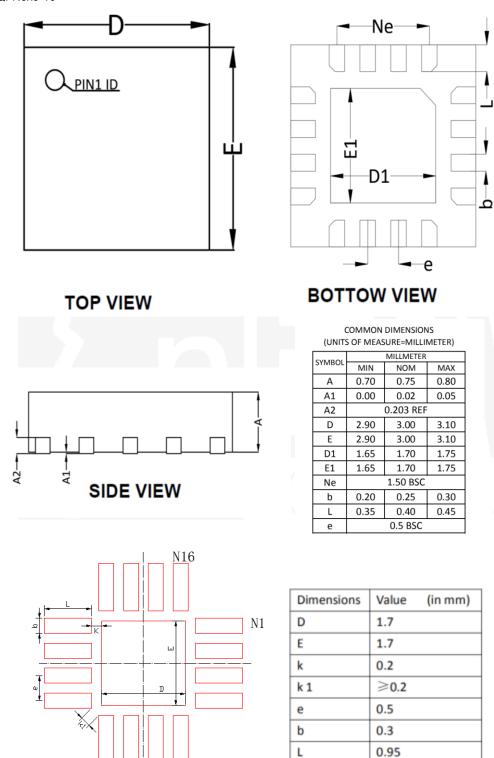
TYPICAL APPLICATION CIRCUIT



2A Switching Charger with Dynamic Power Path with OVP protection and Charge Enable

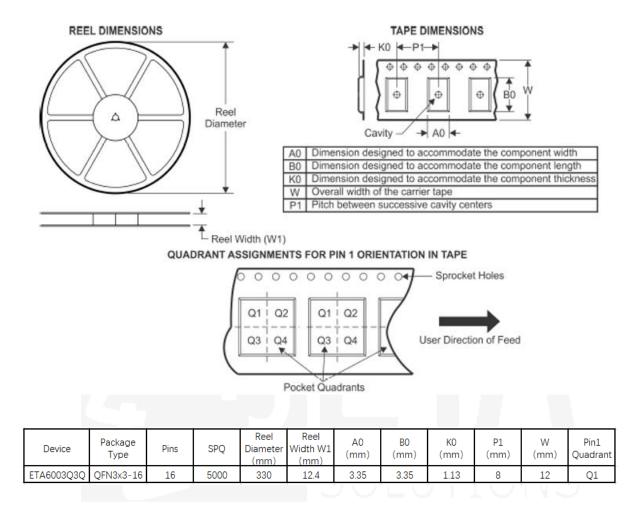
PCB GUIDELINES

PCB layout cautions of ETA6003 is shown below. The input capacitor (Cin) between Vin (Pin2) and PGND (Pin5) is always to be placed closest to the IC. SW wire can be laid through the gap between the 2 Cin terminals. It can go underneath the Cin. For all pins that needs to shorted to GND, please connect them to GND (Pin10), not to PGND (Pin5). A real PCB layout example is also listed below for reference.



Real DEMO board PCB for reference

PACKAGE OUTLINE


Package: QFN3x3-16

RECOMMENDED LAND PATTERN

TAPE AND REEL INFORMATION

