40V/3A, 9 $\mu \mathrm{A}$ IQ, High Efficiency Synchronous Step-Down Converter

DESCRIPTION

The ETA2894 is a high-efficiency and high frequency DC-to-DC step-down switching regulator, capable of delivering up to 3 A of output current. The device operates with input voltage from 3.6 V to 40 V , making the ETA2894 ideal for wide input voltage range power conversion. ETA2894 adopts adjustable frequency current mode, the high frequency allows the use of small inductance value and low DCR inductors, thereby achieving higher space efficiencies. During light load, the converter goes into PFM mode that saves switching loss to achieve high power efficiency.

ETA2894 is available in QFN3x4-24 package.

FEATURES

- Wide Input voltage range $3.6 \mathrm{~V}-40 \mathrm{~V}$
- Ultra No load IQ 9uA
- Capable of Delivering 3A output
- Current mode Control
- Programmable switching frequency
- High Efficiency PFM mode at light load
- High Efficiency Synchronous operation
- Low Rdson Internal power FETs
- Thermal Shutdown and UVLO protection
- Available in QFN3x4-24 Package

APPLICATIONS

- Vehicle Electrical Devices
- Smart Home
- Surveillance

TYPICALAPPLICATION

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

IN, SW, EN Voltage........................... -0.3 V to 45 V
BST Voltage -0.3 V to $\mathrm{SW}+6 \mathrm{~V}$
FB,FOSC,VCC Voltage -0.3 V to 6.5 V
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range........... $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Thermal Resistance $\theta_{\mathrm{JA}} \quad \theta_{\mathrm{Jc}}$
QFN3x4-24...................50...........10.......... ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (Soldering 10sec) $260^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

$\left(V_{\mathbb{N}}=12 \mathrm{~V}\right.$, $\mathrm{V}_{\text {out }}=5 \mathrm{~V}$, unless otherwise specified. Typical values are at $\mathrm{TA}=25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range (1)		3.6		40	V
Input UVLO	Rising, Hysteresis=320mV		3.9		V
	Falling		3.6		V
Input OVP (1)	Rising, Hysteresis=5V		40		V
	Falling		35		V
Input Supply Current	VFB=1.1V, no switching		9		$\mu \mathrm{A}$
Input Shutdown Current			1.2		$\mu \mathrm{A}$
VCC Internal Voltage		5	5.5	6	V
VCC current limit			30		mA
FB_Voltage		0.985	1	1.015	V
FB_ Input Current (1)			0		$\mu \mathrm{A}$
Switching Frequency	Ff, Rosc open		130		Khz
	Rosc $=62 \mathrm{k}$		456		Khz
	Fs, Rosc $=0$		1.1		Mhz
Switching Frequency range		150		1100	Khz
Maximum Duty Cycle	FSW $=500 \mathrm{KHz}, \mathrm{Cbst}=10 \mathrm{nF}$, VIN=4.9V, Voutset=5V		99		\%
Short Circuit Hiccup Time (1)	On Time, FSW=500KHz		2.5		mS
	Off Time, FSW=500KHz		6.5		mS
FB_Hiccup falling Threshold			42		\%VFB
www.etasolution.com	2	Empowering Thinkers			

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
FB_Hiccup rising			46		\%VFB
FB_OVP rising			113		\%VFB
FB_OVP falling			111		\%VFB
Load step	$\begin{aligned} & \text { VIN }=12 \mathrm{~V}, \mathrm{VOUT}=5 \mathrm{~V}, \\ & \text { cout }=44 \mathrm{uF}, \text { lload }=0.1 \mathrm{~A} \text { to } \\ & 3 \mathrm{~A} \end{aligned}$		5		\%/A
High Side Switch On Resistance (1)			131		$\mathrm{m} \Omega$
Low Side Switch On Resistance (1)			84		$\mathrm{m} \Omega$
			6.5		A
(During Foldback		2.1		A
Low Side Zero Crossing Current (1)			100		mA
SW Leakage Current	$\mathrm{IN}=\mathrm{SW}=12 \mathrm{~V}$		0		$\mu \mathrm{A}$
FOSC Voltage			1		V
EN Rising Threshold	Rising		1		V
EN Falling Threshold	Falling		0.9		V
EN pull up Current	$\mathrm{VEN}=0 \mathrm{~V}$		0.25		uA
Thermal Shutdown (2)	Rising		160		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hys (2)			40		${ }^{\circ} \mathrm{C}$

Notes:

1) Guaranteed by Design
2) Guaranteed by Engineering Characterization

PIN DESCRIPTION

PIN\#	NAME	DESCRIPTION
1	FB	Feedback Input. Connect an external resistor divider from the output to FB and GND to set Vout
22	VCC	Power supply pin for internal circuit. Bypass with a 1uF capacitor
2	FOSC	Frequency Setting pin. Connect a resistor from this pin to GND to set the switching frequency between 130kHz to 1.1MHz. The switching frequency equals to: Fsw=28000/Rosc kHz , where Rosc is in $\mathrm{k} \Omega$
5,6	SW	Inductor Connection. Connect an inductor between SW and the regulator output
$15,16,17$	IN	Input power pin. Bypass to GND with a minimum 10uF X7R or X5R capacitor
4	BST	Bootstrap pin. Connect a 10nF capacitor from this pin to SW
19	EN	Enable pin. Drive this pin high or floating to enable, low to disable.It has an accurate threshold for seting UVLO externally
$10,11,13,14 /$ Exposed Pad	PGND	Power Ground pin
23	AGND	Analog Ground pin. Short to PGND
$3,7,8,9,12$, $18,20,21,24$	NC	Not Connected

FUNCTIONAL BLOCK DIAGRAM

TYPICAL CHARACTERISTICS

(Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.)

Iq Vs. Vin

Load Regulation

Efficiency Vs. lout

Line Regulation

FUNCTIONAL DESCRIPTION

ETA2894 is a wide input range, high-efficiency and high frequency DC-to-DC step-down switching regulators. It is capable of delivering up to 3 A of output current

Light Load Operation

Traditionally, a fixed constant frequency PWM DC-DC regulator always switches even when the output load is small. When energy is shuffling back and forth through the power MOSFET, power is lost due to the finite Rdson of the MOSFET and parasitic capacitances. At light load, this loss is prominent and efficiency is therefore very low. ETA2894 goes into a power save mode during light load, thereby extending the range of high efficiency operation.

Enable

EN is a digital control pin that turns the ETA2894 on and off. Drive EN High or floating to turn on the regulator, drive it Low to turn it off. An internal 0.25 uA pullup current from VIN to EN allows EN float to turn on the chip.

Over Current Protection and Hiccup

ETA2894 has a cycle-by-cycle over current limit for when the inductor current peak value is over the set current limit threshold. When the output voltage drop until FB falls below UV threshold ($42 \% \mathrm{Vfb}$), the ETA2894 will enter hiccup mode. It will turn off the chip immediately for 6.5 mS . After that, it will try to restarts as normal for 2.5 mS . After 2 mS , if FB is still below UV threshold, then the chip enters hiccup mode again. If FB is higher than UV threshold, it will enter the normal mode.

Over-Temperature Protection

Thermal protection disables the output when the junction temperature rises to approximately $150^{\circ} \mathrm{C}$, allowing the device to cool down. When the junction temperature cools to approximately $110^{\circ} \mathrm{C}$, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting the device from damage as a result of overheating.

APPLICATION INFORMATION

External Output Voltage Setting

In external Output Voltage Setting Version selected, the ETA2894 regulator is programmed using an external resistor divider. The output voltage is calculated using below equation.

$$
V_{\text {OUT }}=V_{F B} \times\left(1+\frac{R_{1}}{R_{2}}\right)
$$

Where: $V_{F B}=1 \mathrm{~V}$ typically

Resistors R 2 has to be between $10 \mathrm{k} \Omega$ to $100 \mathrm{~K} \Omega$ and thus R 1 is calculated by following equation.

$$
R_{1}=\left(\frac{V_{O U T}}{V_{R E F}}-1\right) \times R_{2}
$$

External Frequency Setting

Use a resistor from FOSC pin to GND to setting the switching frequency.

$$
F_{s w}=\frac{28000}{R_{o s c}} \quad(\mathrm{Khz})
$$

With Rosc in $\mathrm{k} \Omega$.
If $R_{\text {osc }}>300 \mathrm{k} \Omega$ the frequency will be fix is $\mathrm{F}_{\text {sw }}=130 \mathrm{kHz}$ (Ff), incase Rosc $<30 \mathrm{k} \Omega$ the frequency will be fix is $F_{s w}=1.1 \mathrm{Mhz}$ (Fs).

PCB LAYOUT GUIDE

Keep the power devices as close to the chip as possible to achieve the smallest power loop area, which leads to the best EMI performance; Cin is always placed nearest to Vin and GND

PACKAGE OUTLINE

Package: QFN3x4-24

TOP VIEW

SIDE VIEW

	SYMBOL	Min	NoM	max
TOTAL THICKNESS	A	0.5	0.55	0.6
STAND OFF	A1	0	0.02	0.05
MOLD THICKNESS	A2	---	0.4	---
L/F THICKNESS	A3	0.152 REF		
LEAD WIDTH	b	0.15	0.2	0.25
	D	3 BSC		
BOOY SIEE	E	4 BSC		
LEAD PITCH	e	0.4 BSC		
	D1	1.6	1.7	1.8
EP SIZE	E1	2.6	2.7	2.8
LEAD LENGTH	L	0.25	0.3	0.35
LEAD TIP TO EXPOSED PAD EDGE	K	0.35 REF		
PACKAGE EDGE TOLERANCE	aoa	0.1		
MOLD FLATNESS	cce	0.1		
COPLANARITY	eee	0.08		
LEAD OFFSET	bbb	0.1		
EXPOSED PAD OFFSET	fff	0.1		

BOTTOM VIEW

NOTES
1.REFER TO JEDEC MO-220;
2.COPLANARITY APPUES TO LEADS, CORNER LEADS AND DIE ATTACH PAD;
3.BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES OF JCET PRESCRIBING; 4.FINISH: Cu/EP • Sn8~20s

