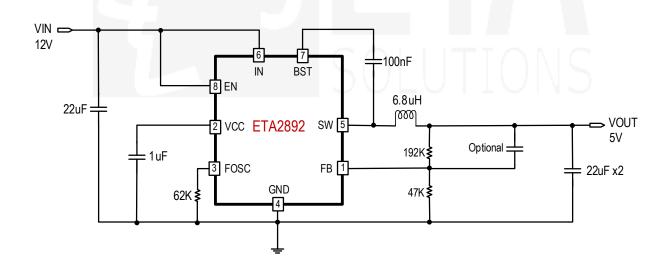


40V/3A, Forced PWM Mode, Synchronous Step-Down Converter

DESCRIPTION

The ETA2892 is a high-efficiency and high-frequency DC-to-DC step-down switching regulator, capable of delivering up to 3A of output current. The device operates with input voltage from 3.6V to 40V, making the ETA2892 ideal for wide input voltage range power conversion. ETA2892 adopts adjustable frequency current mode, the high frequency allows the use of the small inductance value and low DCR inductors, thereby achieving higher space efficiencies.

ETA2892 is available in ESOP8 package.


FEATURES

- Wide Input Voltage Range 3.6V-40V
- Capable of Delivering 3A Output
- Current Mode Control
- Programmable Switching Frequency
- Forced PWM Mode
- Low Rdson Internal Power FETs
- Thermal Shutdown and UVLO Protection
- Available in ESOP8 Package

APPLICATIONS

- Vehicle Electrical Devices
- Smart Home
- Surveillance

TYPICAL APPLICATION

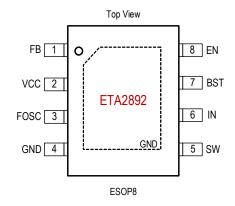
ORDERING INFORMATION

PART No.

PACKAGE

TOP MARK

Pcs/Reel


ETA2892E8A

ESOP8

ETA2892 YWW2L 4000

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

IN, SW, EN Voltage			0.3V to 45V
BST Voltage		0	.3V to SW+6V
FB,FOSC,VCC Voltage .			0.3V to 6.5V
Operating Temperature F	Range		-40°C to 85°C
Storage Temperature Ra	nge	5	55°C to 150°C
Thermal Resistance	θ_{JA}	Θ_{JG}	С
ESOP8	50	10)°C/W
Lead Temperature (Solde	ering '	10sec)	260°C

ELECTRICAL CHARACTERISTICS

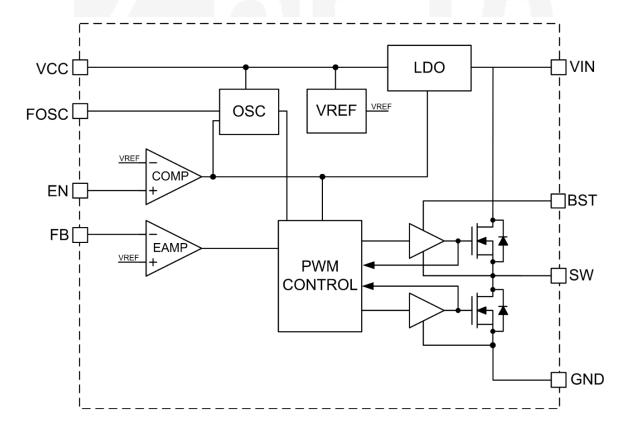
(V_{IN} = 12V, V_{OUT} = 5V, unless otherwise specified. Typical values are at TA = 25°C.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage Range (1)		3.6		40	V
Input IIV/I O	Rising		3.9		V
Input UVLO	Falling		3.6		V
Innut OVD (1)	Rising		40		V
Input OVP (1)	Falling		37.5		V
Input Supply Current	V _{IN} =12V,V _{OUT} =5V		10		mA
Input Shutdown Current			1.2		μΑ
VCC Internal Voltage		5	5.5	6	V
VCC Current Limit			30		mA
FB_ Voltage		0.985	1	1.015	V
FB_ Input Current (1)			0		μΑ
	Ff, Rosc open		130		KHz
Switching Frequency	R _{OSC} =62K		456	6 1.015	KHz
	Fs, R _{OSC} =0		1.1		MHz
Switching Frequency Range		130		1100	KHz
Maximum Duty Cycle	F _{SW} =500KHz, C _{BST} =10nF, V _{IN} =4.9V, Voutset=5V		99		%
Object Object III	On Time, F _{SW} =500KHz		2.5		mS
Short Circuit Hiccup Time (1)	Off Time, F _{SW} =500KHz		6.5		mS
FB_ Hiccup Falling Threshold			42		%VFB

ETA2892

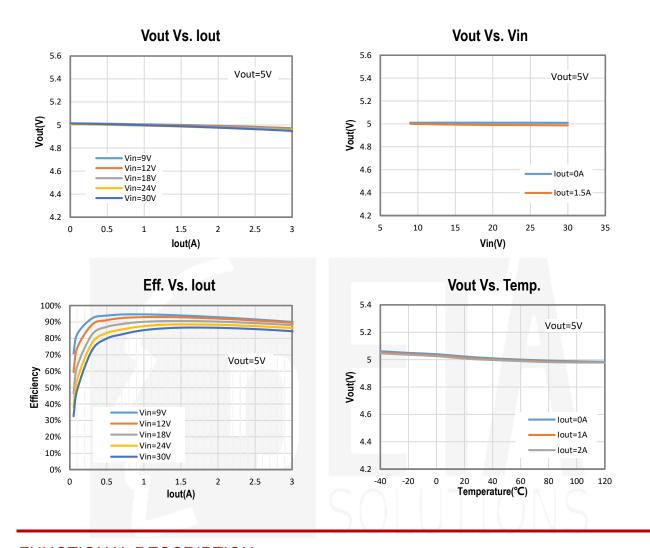
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
FB_ Hiccup Rising			46		%VFB
FB_ OVP Rising			113		%VFB
FB_ OVP Falling			111		%VFB
Load Step	$V_{IN} = 12V, V_{OUT} = 5V,$ $C_{OUT} = 44uF, I_{OUT} = 0.1A \text{ to } 3A$		3		%/A
High Side Switch On Resistance (1)			131		mΩ
Low Side Switch On Resistance (1)			84		mΩ
High Oids Occurrent Limit (4)			6.5		Α
High Side Current Limit (1)	During Foldback		2.1		Α
SW Leakage Current	V _{IN} =V _{SW} =12V		0		μΑ
FOSC Voltage			1		V
EN Rising Threshold	Rising		1		V
EN Falling Threshold	Falling		0.9		V
EN Pull Up Current	V _{EN} =0V		0.25		uA
Thermal Shutdown (2)	Rising		160		°C
Thermal Shutdown Hys (2)			40		°C

Notes:


- 1) Guaranteed by Design
- 2) Guaranteed by Engineering Characterization

PIN DESCRIPTION

PIN#	NAME	DESCRIPTION					
1	FB	Feedback Input. Connect an external resistor divider from the output to FB and					
	ГБ	GND to set V _{OUT}					
2	VCC	Power supply pin for internal circuit. Bypass with a 1uF capacitor					
		Frequency Setting pin. Connect a resistor from this pin to GND to set the switching					
3	FOSC	frequency between 130KHz to 1.1MHz. The switching frequency equals to:					
		F_{SW} =28000/ R_{OSC} KHz, where R_{OSC} is in K Ω					
4	GND	Ground pin					
5	SW	Inductor Connection. Connect an inductor between SW and the regulator output					
6	IN	Input power pin. Bypass to GND with a minimum 10uF X7R or X5R capacitor					
7	BST	Bootstrap pin . Connect a 10nF capacitor from this pin to SW					
8	EN	Enable pin. Drive this pin high or floating to enable, low to disable. It has an					
	accurate threshold for seting UVLO externally						
Exposed	GND	Ground pin					
Pad	CIAD	Orodina pin					


FUNCTIONAL BLOCK DIAGRAM

TYPICAL CHARACTERISTICS

(Typical values are at T_A = 25°C unless otherwise specified.)

FUNCTIONAL DESCRIPTION

ETA2892 is a wide input range, high-efficiency and high-frequency DC-to-DC step-down switching regulator. It is capable of delivering up to 3A of output current.

Forced PWM Mode

A forced PWM DC-DC regulator always switches at a fixed frequency when the output heavy load or light load. This is to ensure a minimum output voltage ripple over the full load range.

Enable

EN is a digital control pin that turns the ETA2892 on and off. Drive EN High or floating to turn on the regulator, drive it Low to turn it off. An internal 0.25uA pull-up current from VIN to EN allows EN float to turn on the chip.

Over Current Protection and Hiccup

ETA2892 has a cycle-by-cycle over current limit for when the inductor current peak value is over the set current limit threshold. When the output voltage drop until FB falls below UV threshold (42%Vfb), the ETA2892 will enter hiccup mode. It will turn off the chip immediately for 6.5mS. After that, it will try to restarts as normal for 2.5mS. After 2.5mS, if FB is still below UV threshold, then the chip enters hiccup mode again. If FB is higher than UV threshold, it will enter the normal mode.

Over-Temperature Protection

Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the device to cool down. When the junction temperature cools to approximately 120°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting the device from damage as a result of overheating.

APPLICATION INFORMATION

External Output Voltage Setting

In external Output Voltage Setting Version selected, the ETA2892 regulator is programmed using an external resistor divider. The output voltage is calculated using below equation.

$$V_{OUT} = V_{FB} \times \left(1 + \frac{R_1}{R_2}\right)$$

Where: V_{FB} =1V typically

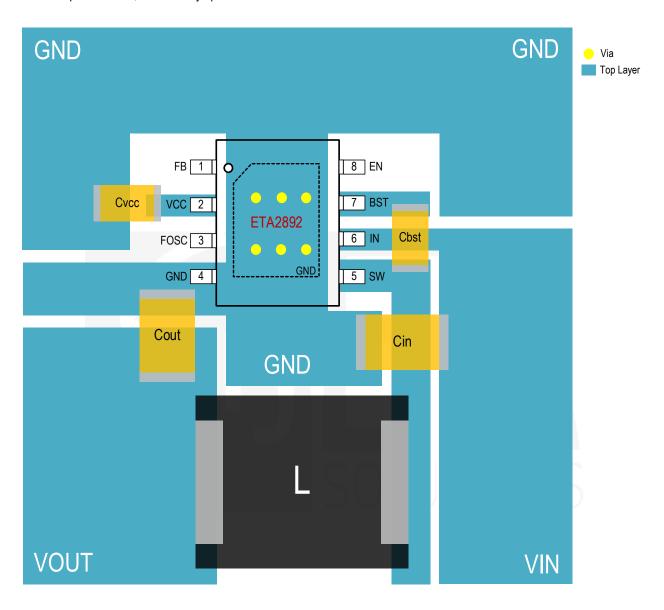
Resistors R2 has to be between $10K\Omega$ to $100K\Omega$ and thus R1 is calculated by following equation.

$$R_1 = \left(\frac{V_{OUT}}{V_{REF}} - 1\right) \times R_2$$

External Frequency Setting

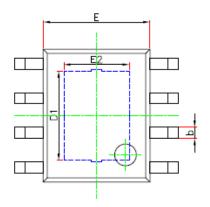
Use a resistor from FOSC pin to GND to setting the switching frequency.

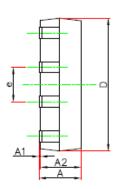
$$F_{sw} = \frac{28000}{R_{osc}} \quad (KHz)$$

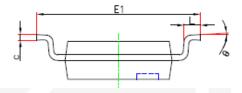

With Rosc in K Ω .

If $R_{OSC} > 300 K\Omega$ the frequency will be fix is $F_{sw} = 130 KHz$ (Ff), incase $R_{OSC} < 30 K\Omega$ the frequency will be fix is $F_{sw} = 1.1 MHz$ (Fs).

PCB LAYOUT GUIDE

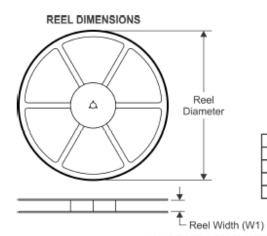

Keep the power devices as close to the chip as possible to achieve the smallest power loop area, which leads to the best EMI performance; Cin is always placed nearest to Vin and GND

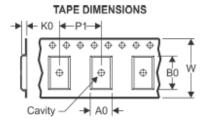




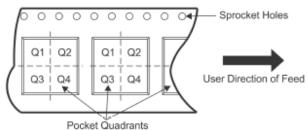
PACKAGE OUTLINE

Package: ESOP8





Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches			
Symbol	Min.	Max.	Min.	Max.		
Α	1.300	1.700	0.051	0.067		
A1	0.000	0.100	0.000	0.004		
A2	1.350	1.550	0.053	0.061		
b	0.330	0.510	0.013	0.020		
С	0.170 0.250		0.007	0.010		
D	4.700	5.100	0.185	0.201		
D1	3.202	3.402	0.126	0.134		
Ш	3.800	4.000	0.150	0.157		
E1	5.800	6.200	0.228	0.244		
E2	2.313 2.513 0.091		0.091	0.099		
е	1.270(BSC)	0.050((BSC)		
L	0.400	1.270	0.016	0.050		
θ	0°	8°	0°	8°		


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ETA2892E8A	ESOP8	8	4000	330	12.7	6.6	5.4	2.05	8	12	Q1