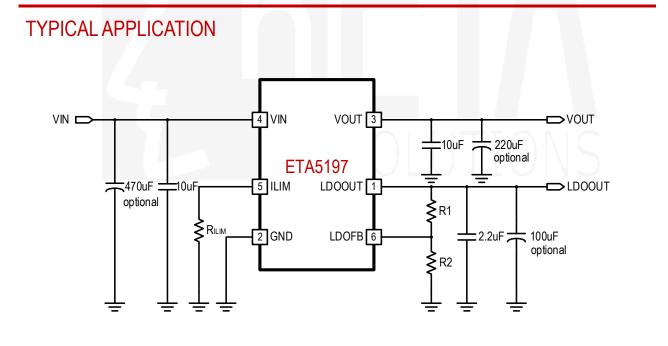


PMU with 24V Current Limit Switch and 200mA Linear Regulator

DESCRIPTION

ETA5197 is a power management unit(PMU) consisting of a 24V current limit switch and a 200mA LDO linear regulator. The input operating voltage can be as high as 24V and input standoff voltage is up to 32V.

The current limit of the switch can be externally programmed by a resistor. The LDO is capable of delivering up to 200mA current with a linear foldback current limit.


ETA5197 is available in SOT23-6 package.

FEATURES

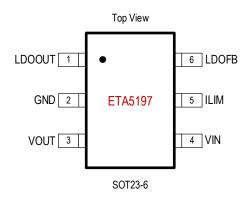
- Stable with Wide Range of Output Capacitor
- Wide Input Voltage Range: 3.8V-24V
- Wide Output Voltage Range of LDO: 1.1-12V
- 32V Input Standoff Voltage
- Programmable Current Limit
- Dual Thermal Shutdown
- SOT23-6 Package

APPLICATIONS

- Power Meter
- Power Meter Module

ORDERING INFORMATION

PART No. ETA5197S2G


o. PACKAGE S2G SOT23-6

Top Mark Ih<u>yw</u>

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

VIN, VOUT, LDOOUT	Voltage	–0.3V	' to 32V
LDOFB, ILIM Voltage.		–0.3V	to 6.5V
VOUT, LDOOUT to GN	VD curren	tInternally	limited
Operating Temperatur	e Range.	–40°C te	o 85°C
Storage Temperature	Range	–55°C to	150°C
Thermal Resistance	θ_{JC}	θ _{JA}	
SOT23-6	90	180	∘C/W
Lead Temperature (So	oldering, ²	10sec)2	260°C
ESD HBM (Human Bo	ody Mode)	. 2KV
ESD CDM (Charged D	Device Mo	ode)	1KV

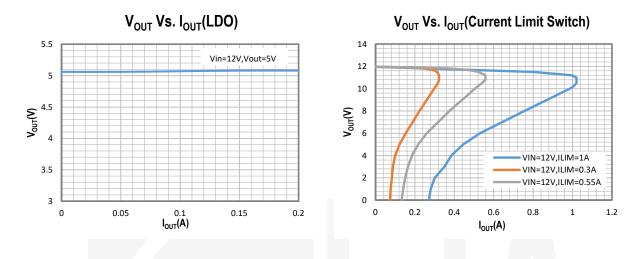
ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TESTCONDITIONS	MIN	TYP	MAX	UNIT	
Input Standoff Voltage	VIN_MAX		32			V	
Input Voltage Range	VIN_RANGE		3.8		24	V	
Input UVLO for System	SYS_UVLO	Rising, Hysteresis=200mV	3.4	3.5	3.65	V	
		V _{IN} = 7V		100	2	μA	
Input Supply Current	IQ	V _{IN} = 12V		180	2	μA	
		V _{IN} = 24V	1 1	200	0	μA	
Thermal Shutdown for System	SYS_TSD	Rising, Hys=15°C		155		۰C	
CURRENT LIMIT SWITCH				•			
Input UVLO For Current Limit Switch	SW_UVLO	Rising, Hysteresis=500mV	7.6	8.0	8.4	V	
Thermal Shutdown for Switch SW_TSD		Rising, Hys=15 ° C		135		۰C	
Power Switch On Resistance				500	900	mΩ	
Current Limit Range	SW_ILIM		0.2		1.2	Α	
	SW_ILIM_0P6	R _{ILIM} =30K	0.55	0.6	0.65		
Current Limit Threshold	SW_ILIM_0P3	R _{ILIM} =60K	0.25	0.3	0.35	mA	
	SW_ILIM_INT	R _{ILIM} <4K	0.6	0.65	0.7	1	
Foldback Current Limit Reduction Ratio	SW_IFLDBCK	I _{OUT_CC} / (VIN SW_VFLDBCKVOUT)		10		%ILIM/ V	

 $(V_{IN} = 12V, V_{LDOOUT}=5V, unless otherwise specified. Typical values are at TA = 25°C.)$

ETA5197

Current Limit Foldback Start Threshold	SW_VFLDBCK	V _{IN} -V _{OUT}		2.5		V
Forward Regulation Voltage	VFWD	I _{OUT} = 10mA		75		mV
LOW DROP-OUT REGULATOR LI	00		•			
Dropout Voltage	VDROPOUT	I _{LDOOUT} =100mA		1.5		V
LDOFB Threshold	VREF	-40°C≤Tյ≤120°C	1.067	1.1	1.133	V
LDOFB Input Leakage	IFB				0.01	μA
Maximum Continuous Output	IOUT				200	mA
Current	1001				200	ША
LDO Current Limit	LDO_ILIM	V _{LDOFB} = 1.05V	250		350	mA
LDO Current Limit at Foldback	LDO_IFLDBCK	V _{LDOOUT} < 0.25V	70	90		mA
LDO Current Limit Foldback Start threshold	LDO_VFLDBCK	LDOFB pin Voltage		0.9		V


PIN DESCRIPTION

PIN #	NAME	DESCRIPTION			
1	LDOOUT	Dutput pin of the LDO. Bypass with a 2.2uF capacitor to GND. A 100uF or larger lectrolytic capacitor can be also placed at the output.			
2	GND	Ground			
3		Dutput pin of the current limit switch. Bypass with a 10uF capacitor to GND. A 220uF or larger electrolytic capacitor can be also placed at the output.			
4	VIN	nput pin. Bypass with a 10uF capacitor to GND. A 470uF or larger electrolytic apacitor can be also placed at the input.			
5	ILIM	Current limit setting pin for the current limit switch. Connect a resistor from this pin to GND. When this pin is shorted to GND, the current limit is 650mA by default.			
6	LDOFB	Feedback pin of the LDO			

TYPICAL CHARACTERISTICS

(VIN = 12V, TA=25°C, unless otherwise specified)

FUNCTION DESCRIPTION

Enable and Disable

LDO is enabled if all of following conditions occur:

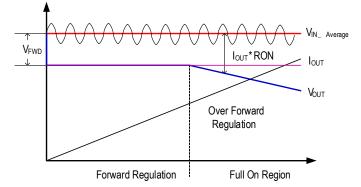
- > VIN is greater than UVLO
- Junction temperature of IC does not exceed SYS_TSD

LDO is disable if one of above conditions do not occur.

Current Limit Switch is enabled if all of following conditions occur:

- > VIN is greater than SW_UVLO
- Junction temperature of IC does not exceed SW_TSD

Current Limit Switch is disable if one of above conditions do not occur.


Current Limit Switch

The ETA5197 is equipped with a current limit switch which can configure the current limit from 200mA to 1200mA. If ILIM pin is shorted to GND or $R_{ILIM} < 4k\Omega$, the current limit is set to 650mA by default.

The ETA5197 Current Limit Switch is enhanced by having a feature that can remove the ripple from the input, and provide a more stable voltage at the output.

Ripple Remove Function

The forward regulation voltage for the ripple remover is 75mV. When the difference between V_{OUT} and $V_{IN_Average}$ is less than 75mV, the ripple remove function will work to filter out the input ripple, so that IC can provide a stable output voltage.

Low Dropout (LDO) Regulator

The ETA5197 is equipped with a low dropout regulator which can configure the output voltage from 1.1V to 12V. The LDO can provide up to 200mA current for the output device.

To inhibit the heat generation of LDO, ETA5197 reduces the LDO current limit. In the foldback condition, the current is reduced linearly when LDO_FB pin voltage falls below 0.9V and get the minimum of 90mA when LDO_FB pin voltage reach 0.2V.

Thermal Shutdown

ETA5197 is integrated with dual independent thermal shutdown activities. When the temperature of IC exceeds SW_TSD (135°C typically), the part shutdowns Current Limit Switch. LDO is still maintained as long as the IC temperature is still under SYS_TSD (155°C typically)

APPLICATION INFORMATION

LDO Output Voltage Setting

The output voltage of the ETA5197 LDO regulator can be programmed by using an external resistor divider. The output voltage is calculated by the equation below.

$$V_{\text{LDOOUT}} = V_{\text{REF}} \times \left(1 + \frac{R_2}{R_1}\right)$$

Where: V_{REF} =1.1V typically (the internal reference voltage)

To minimize feedback resistor current which is determined by V_{REF} and R_1 , R_1 has to be from $22k\Omega$ to $220k\Omega$ and thus R_2 is calculated by the following equation:

$$\mathbf{R}_{2} = \left(\frac{\mathbf{V}_{\text{LDOOUT}}}{\mathbf{V}_{\text{REF}}} - 1\right) \times \mathbf{R}_{1}$$

www.etasolution.com

ETA5197

R ₁ = 22kΩ	$R_1 = 22k\Omega (I_{FB} = 50\mu A)$ $R_1 = 33k\Omega (I_{FB} = 33\mu A)$ $R_1 = 44k\Omega (I_{FB} = 25\mu A)$		(I _{FB} = 25µА)	R ₁ = 66kΩ (I _{FB} = 16.67μA)			
R₂ (kΩ)	Vout (V)	R ₂ (kΩ)	Vout (V)	R ₂ (kΩ)	Vout (V)	R₂ (kΩ)	Vout (V)
11	1.2	3	1.2	4	1.2	6	1.2
14	1.8	21	1.8	28	1.8	42	1.8
28	2.5	42	2.5	56	2.5	84	2.5
44	3.3	66	3.3	88	3.3	132	3.3
58	4	87	4	116	4	174	4
78	5	117	5	156	5	234	5
98	6	147	6	196	6	294	6
118	7	177	7	236	7	354	7
138	8	207	8	276	8	414	8
158	9	237	9	316	9	474	9
178	10	267	10	356	10	534	10
2	1.2	3	1.2	4	1.2	6	1.2
14	1.8	21	1.8	28	1.8	42	1.8
28	2.5	42	2.5	56	2.5	84	2.5

LDO output voltage configuration is recommended in following table:

LDO Output Capacitor Selection

By using ETA Solutions architecture, LDO output can be stable with any capacitor type ranging from 1μ F to 100μ F. To maximize LDO performance, it is strong recommended to select output capacitor with some below tips:

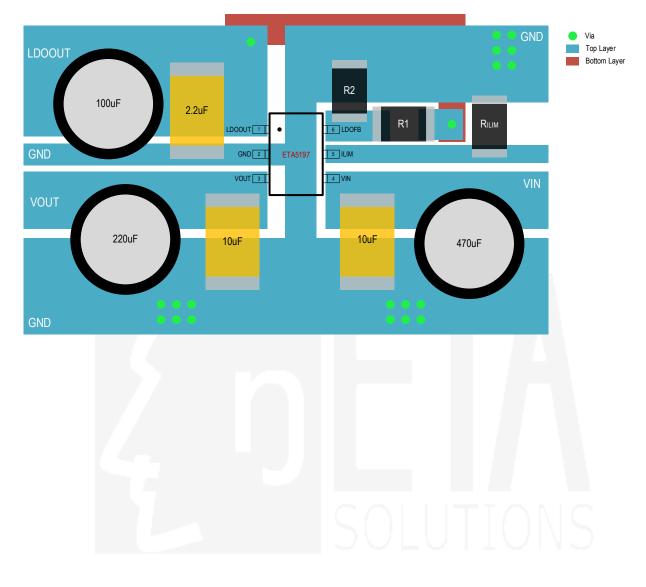
- If need to use huge capacitor, It will be no problem to use a 1µF ceramic capacitor in parallel with a huge electrolytic capacitor. Or it can even be a single electrolytic capacitor.
- > Use the capacitor bigger than 2.2uF for the setting of LDOOUT lower than 1.5V for better transient.

Switch Current Limit Setting

Switch current limit is given by the following equation:

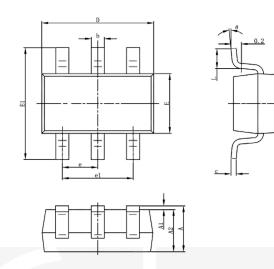
$$\text{ILIM}(\text{mA}) = \frac{18000}{\text{R}_{\text{ILIM}}(k\Omega)}$$

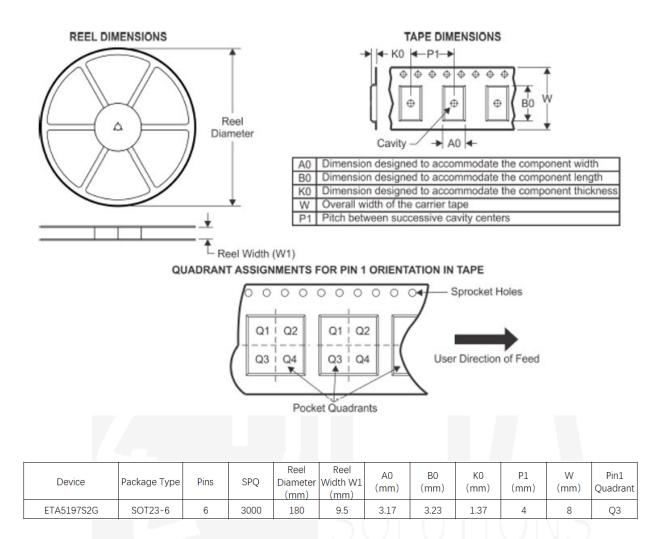
R_{ILIM} (kΩ) ILIM (mA) $R_{ILIM}(k\Omega)$ ILIM (mA) 1200 15 30 600 18 1000 40 450 20 900 50 360 25 720 90 200


Switch current limit is recommended in the following table:

If ILIM pin is shorted to GND or $R_{ILIM} < 4k\Omega$, the current limit is set to 650mA by default.

ETA5197


PCB GUIDELINES


PACKAGE OUTLINE

Package: SOT23-6

Querra la	Dimensions Ir	n Millimeters	Dimensions	s In Inches	
Symbol	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

TAPE AND REEL INFORMATION

