0.9V Startup, $1.2 \mu \mathrm{~A}$ IQ, Supper High Efficiency Synchronous Boost

DESCRIPTION

ETA1069 is a high efficiency synchronous step-up converter with ultra-low quiescent current down to $1.2 \mu \mathrm{~A}$. It is capable of delivering at least 3 W of power from a low voltage source, i.e. 0.6 A at 5 V output. It also features a true-shutoff function that disconnects the input from output, during shutdown and output short-circuit conditions. This eliminates the need for an external MOSFET and its control circuitry to disconnect the input from output and provides robust output overload protection.

A switching frequency of 1 MHz minimizes solution footprint by allowing the use of tiny and low profile inductors and ceramic capacitors. An internal synchronous MOSFET provides high efficiency and with a current mode control that is internally compensated, external parts count is reduced to minimal. With the ultra-low IQ feature, ETA1069 is ideal for solution that requires low standby power and compact board size such as loT applications. ETA1069 is available in a SOT23-6,DFN2x2-6 package

FEATURES

- Ultra-low IQ
1.2uA for adjustable version
$1.25 u A$ for fixed voltage version
- 0.9V Startup
- Output to Input Reversed Current Protection
- Up to 96\% Efficiency
- Short-circuit Protection
- Adjustable version and Fixed voltage version
- SOT23-6 and DFN2x2-6 Package
- RoHS Compliant

APPLICATIONS

- Tablet, MID
- Smart Phone
- Battery Powered Systems
- Low Power Wireless Applications

TYPICALAPPLICATION

*For fixed voltage version,R1,R2 and 10 pF are not needed and pin5 is NC .

	PART No.	Version	PACKAGE	TOP MARK	Pcs/Reel
ORDERING	ETA1069S2G	Adjustable	SOT23-6	PBYW	3000
INFORMATION	ETA1069V33S2G	Fixed 3.3V Output	SOT23-6	PLYW	3000
	ETA1069V50S2G	Fixed 5.0V Output	SOT23-6	PVYW	3000
	ETA1069D2G	Adjustable	DFN2x2-6	P6YW	3000
	ETA1069V33D2G	Fixed 3.3V Output	DFN2x2-6	PiYW	3000
	ETA1069V50D2G	Fixed 5.0V Output	DFN2x2-6	PwYW	3000

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.) IN, OUT, SW, FB, EN pin Voltage. -0.3 V to 6.5 V
SW to ground current \qquad ..Internally limited Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Storage Temperature Range................... $-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Thermal Resistance $\quad \theta_{\mathrm{JA}} \quad \theta_{\mathrm{jc}}$ SOT23-6...................... 180 90 $\qquad$${ }^{\circ} \mathrm{C} / \mathrm{W}$
DFN2x2-6

. 80.

. 30
$.{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature (Soldering 10sec) $.260^{\circ} \mathrm{C}$
ESD HBM (Human Body Mode) 4KV
ESD CDM (Charged Device Mode) 1KV

ELECTRICAL CHARACTERISTICS

$\left(V_{\mathbb{N}}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {out }}=5 \mathrm{~V}\right.$, unless otherwise specified. Typical values are at $\mathrm{TA}=25^{\circ} \mathrm{C}$.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Quiescent Current at OUT pin, adjustable version	$\mathrm{V}_{\text {EN }}=\mathrm{V}_{\text {IN }}$, No load, Not switching		1.2	2	$\mu \mathrm{A}$
Quiescent Current at OUT pin, fixed voltage version	$V_{E N}=V_{\text {IN }}$, No load, Not switching		1.25	2.5	$\mu \mathrm{A}$
Quiescent Current at IN pin, fixed 3.3V version	$\mathrm{V}_{\text {En }}=\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$		2	3	UA
Shutdown Supply Current at IN pin	$V_{\text {EN }}=\mathrm{GND}$		0.32		$\mu \mathrm{A}$
Input Startup Voltage	lout $=1 \mathrm{~mA}$, Hysteresis $=200 \mathrm{mV}$		0.9		V
Input Operation Voltage	After Start-up	0.75		5.5	V
Output Voltage at 5V		4.85	5	5.15	V
Output Voltage at 3.3 V		3.2	3.3	3.4	V
Min Output Voltage	$\mathrm{V}_{\text {In_min }}=1 \mathrm{~V}$, lout_max $=10 \mathrm{~mA}$		2.2		V
Feedback Voltage		0.92	0.94	0.97	V
Switching Frequency			1		MHz
NMOS Switch On Resistance	$1 \mathrm{sw}=100 \mathrm{~mA}$		140		$\mathrm{m} \Omega$
PMOS Switch On Resistance	$\mathrm{I}_{\mathrm{sw}}=100 \mathrm{~mA}$		120		$\mathrm{m} \Omega$
SW Leakage Current	$\mathrm{V}_{\text {OUT }}=5.2 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=\mathrm{GND}, \mathrm{V}_{\text {SW }}=5.2 \mathrm{~V}$ or $\mathrm{V}_{\text {SW }}=0 \mathrm{~V}$			3	$\mu \mathrm{A}$
NMOS Switch Current Limit			1.6		A
Start-up Current Limit			0.7		A
Short Circuit Hiccup time	ON		2		ms
	OFF		42		ms
EN Input Current	$\mathrm{V}_{\text {EN }}=5 \mathrm{~V}$ or 0 V	-1	0	1	$\mu \mathrm{A}$
EN High Voltage	$V_{\text {Out }}=5 \mathrm{~V}$	1.2			V
EN Iow Voltage	Vout $=5 \mathrm{~V}$			0.4	V
Thermal Shutdown	Rising, Hysteresis $=25^{\circ} \mathrm{C}$		150		${ }^{\circ} \mathrm{C}$

PIN DESCRIPTION

SOT23-6 PIN \#	DFN2x2-6 PIN \#	NAME	DESCRIPTION
1	2	OUT	Output Pin. Bypass with a 10 1 F or larger ceramic capacitor closely between this pin and GND
2	1	GND	Ground Pin
3	4	EN	Enable Pin for the IC. Drive this pin high to enable the part, low to disable.
4	6	IN	Input Supply Voltage pin. Bypass with a 4.7 4 F ceramic capacitor to GND
5	3	FB/NC	Feedback Input. Add an external resistor divider from the OUT to FB and GND to set Vout for adjustable output voltage. There is no FB pin for fixed voltage version. The pin is "Not Connected".
6	5	SW	Switch pin of converter. It is connected to the inductor.

TYPICAL CHARACTERISTICS

(Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

TYPICAL CHARACTERISTICS cont'd

(Typical values are at $\mathrm{TA}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Output Waveform $\mathrm{V}_{\mathbb{N}}=3.7 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=5 \mathrm{~V}$, No load

Load Transient
$\mathrm{V}_{\mathbb{I}}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {out }}=5 \mathrm{~V}$, lout $=60 \mathrm{~mA}$ to 600 mA

Output Waveform
$\mathrm{V}_{\mathbb{N}}=3.7 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, lout $=200 \mathrm{~mA}$

Line Transient
$\mathrm{V}_{\mathbb{N}}=2.4 \mathrm{~V}$ to $3.7 \mathrm{~V}, \mathrm{~V}_{\text {out }}=5 \mathrm{~V}$, I $_{\text {out }}=600 \mathrm{~mA}$

APPLICATION INFORMATION

Loop Operation

ETA1069 is a high efficiency synchronous step-up converter with ultra-low quiescent current down to $1.2 \mu \mathrm{~A}$. It integrates a $140 \mathrm{~m} \Omega$ Low Side Main MOSFET and $120 \mathrm{~m} \Omega$ synchronous MOSFET. It uses a PWM current-mode control scheme. An error amplifier integrates error between the FB signal and the internal reference voltage. The output of the integrator is then compared to the sum of a current-sense signal and the slope compensation ramp. This operation generates a PWM signal that modulates the duty cycle of the power MOSFETs to achieve regulation for output voltage.
The peak current of the NMOS switch is also sensed to limit the maximum current flowing through the switch and the inductor. The typical peak current limit is set to 1.6 A . An internal temperature sensor prevents the device from getting overheated in case of excessive power dissipation.

Ultra low current consumption at Light Load Operation

Traditionally, a fixed constant frequency PWM DC/DC regulator always switches even when the output load is small. When energy is shuffling back and forth through the power MOSFETs, power is lost due to the finite RDSONs of the MOSFETs and parasitic capacitances. At light load, switching loss is prominent and efficiency is therefore very low. ETA1069 employs a proprietary control scheme that improves efficiency in this situation by enabling the device into a power saving mode during light load and the no load quiescent current can be as low as $1.2 \mu \mathrm{~A}$.

Short-Circuit Protection

Unlike most step-up converters, the ETA1069 allows for short circuits on the output. In the event of a short circuit, the device first turns off the NMOS when the sensed current reaches the current limit. When OUT drops below IN, the device then enters a linear charge period with the current limited same as with the start-up period. In addition, the thermal shutdown circuits disable switching if the die temperature rises above $150^{\circ} \mathrm{C}$.

Adjustable Output Voltage Setting with FB pin

By adding a resistor divider at FB pin (R 1 and R 2 as shown in the circuit below), ETA1069 can be set to any voltage level less than 5.7 V at output node. The R2 is recommended to be 2 Mohm or less, which will add about 0.5 uA or more at output. The output voltage is set by following equation:

$$
V_{\text {OUT }}=\frac{R 1+R 2}{R 2} \times 0.94 \mathrm{~V}
$$

Application Circuit

BLOCK DIAGRAM

PCB GUIDELINES

DFN2x2-6 package

PACKAGE OUTLINE

Package: SOT23-6

Symbol	Disensions in Willititeters		Dinensions In Inches	
	Vin	Hax	Vin	Vax
A	1050	1250	0.041	0.049
A1	0000	0100	0.000	0.004
A2.	1.050	1150	0.041	0045
b	0300	0500	0.012	0.020
0	0100	0200	0.004	0.008
D	2820	3020	0111	0119
E	1.500	14700	0.059	0.067
E1	2650	2950	0.104	0.116
e	0.950 (BSC)		0.037 (8SC)	
el	1800	2000	0.071	00.079
L	0.300	0.600	0.012	0.024
θ	0^{2}	8.	O	8

Package: DFN2x2-6

From assembly house 1 :

TOP VIEV

SIDE VIEF

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min.	Max.	Min.	Max.
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A3	0.203REF.		0.008REF.	
D	1.900	2.100	0.075	0.083
E	1.900	2.100	0.075	0.083
D1	0.900	1.100	0.035	0.043
E1	1.500	1.700	0.059	0.067
k	0.250 REF .		0.010 REF .	
b	0.250	0.350	0.010	0.014
b1	0.220 REF.		0.009 REF.	
e	0.650BSC.		$0.026 B S C$.	
L	0.174	0.326	0.007	0.013

From assembly house 2:

EXPOSED THERMAL PAD ZONE

BOTTOM VIEW

SYMBOL	MILLIMETER		
	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	-	0.02	0.05
b	0.25	0.30	0.35
c	0.18	0.20	0.25
D	1.95	2.00	2.05
D2	1.00	1.23	1.45
e	0.65 BSC		
Nd	1.30 BSC		
E	1.95	2.00	2.05
E2	0.50	0.68	0.85
L	0.25	0.30	0.40
h	0.10	0.15	0.20

Dimensions	Value (in mm)
D	2
E	2
D 1	1.6
E 1	1
e	0.65
b	0.3
L	0.55
k	$0.25(\mathrm{~min} \geqslant 0.2)$

TAPE AND REEL INFORMATION

