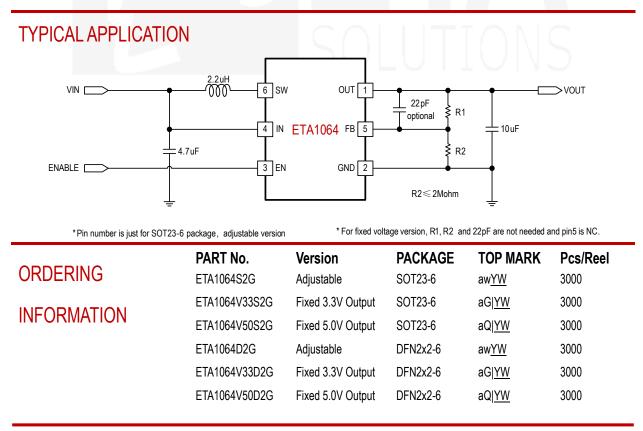


1µA Ultra Iow Iq, 0.8V Startup,1A Synchronous Boost

DESCRIPTION

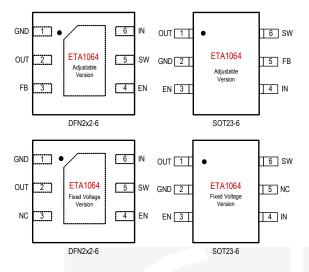
ETA1064 is a high efficiency synchronous step-up converter with ultra-low quiescent current down to 1µA. It is capable of delivering at least 2W of power from a low voltage source, i.e. 0.4A at 5V output. It also features a true-shutoff function that disconnects the input from output, during shutdown and output short-circuit conditions. This eliminates the need for an external MOSFET and its control circuitry to disconnect the input from output and provides robust output overload protection.

A switching frequency of 1.4MHz minimizes solution footprint by allowing the use of tiny and low profile inductors and ceramic capacitors. An internal synchronous MOSFET provides highest efficiency and with a current mode control that is internally compensated, external parts count is reduced to minimal. With the ultra-low lq feature, ETA1064 is ideal for solution that requires low standby power and compact board size such as IoT applications.


ETA1064 is housed in a SOT23-6 and DFN2x2-6 package

FEATURES

- Ultra low IQ when No Switching :1uA for adjustable version and 1.2uA for fixed voltage version
- 0.8V Startup
- 5V/0.4A Output Capability at Vin=3V
- Output to Input Reversed Current Protection
- Up to 94% Efficiency
- Internal Synchronous Rectifier and Output Disconnect
- Short-circuit Protection
- Adjustable version and Fixed voltage version
- SOT23-6 & DFN2x2-6 Package


APPLICATIONS

- Tablet, MID
- Smart Phone
- Power Bank

PIN CONFIGURATION

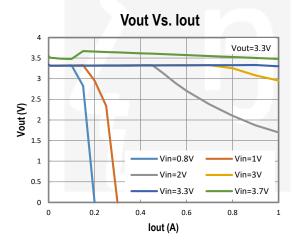
ELECTRICAL CHARACTERISTICS

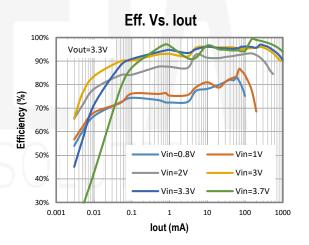
ABSOLUTE MAXIMUM RATINGS

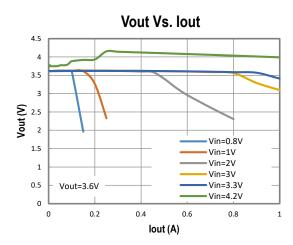
(Note: Exceeding these limits may damage the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.)

IN OUT, SW, FB, EN Vo	0.3	3V to 6.5V			
SW to ground current .	Interna	Internally limited			
Operating Temperature	40°	–40°C to 85°C			
Storage Temperature F	–55°C	–55°C to 150°C			
Thermal Resistance	θ _{JA}	θ」			
SOT23-6	180	90	°C/W		
DFN2x2-6	80		°C/W		
Lead Temperature (Soldering 10sec)					
ESD HBM (Human Body Mode)2KV					
ESD CDM (Charged Device Mode)1KV					

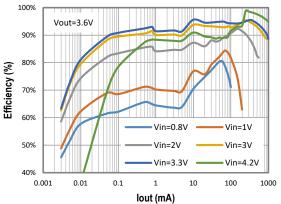
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Quiescent Current at OUT, adjustable version	V _{EN} =V _{IN} , No load, Not switching		1	2	μA
Quiescent Current at OUT, fixed voltage version	V _{EN} =V _{IN} , No load, Not switching		1.2	2.5	μA
Quiescent Current at IN, fixed 3.3V version	V _{EN} =V _{IN} =3.6V	15 30		30	uA
Shutdown Supply Current at IN	V _{EN} =GND		0.32		μA
IN Startup Voltage	I _{OUT} =1mA,Hysteresis=200mV		0.75		V
IN Operation Voltage	After Start-up	0.55	N N I	5	V
Output Voltage at 5V		4.85	5	5.15	V
Output Voltage at 3.3V	00101	3.2	3.3	3.4	V
Feedback Voltage		1.076	1.11	1.144	V
Switching Frequency			1.4		MHz
NMOS Switch On Resistance	I _{SW} =100mA		250		mΩ
PMOS Switch On Resistance	I _{sw} =100mA		160		mΩ
SW Leakage Current	$V_{\text{OUT}}{=}5.2\text{V},\ V_{\text{EN}}{=}G\text{ND},\ V_{\text{SW}}{=}5.2\text{V}$ or $V_{\text{SW}}{=}0\text{V}$			10	μA
NMOS Switch Current Limit			1		А
Start-up Current Limit			1		А
Short Circuit Hiccup time	ON		1.3		ms
Short Circuit Hiccup time	OFF		33		ms
EN Input Current	V _{EN} =5V or 0V	-1	0	1	μA
EN High Voltage	V _{OUT} =5V 0.75			V	
EN low Voltage	V _{OUT} =5V		0.25		V
Thermal Shutdown	Rising, Hysteresis=25°C	sis=25°C 155		°C	

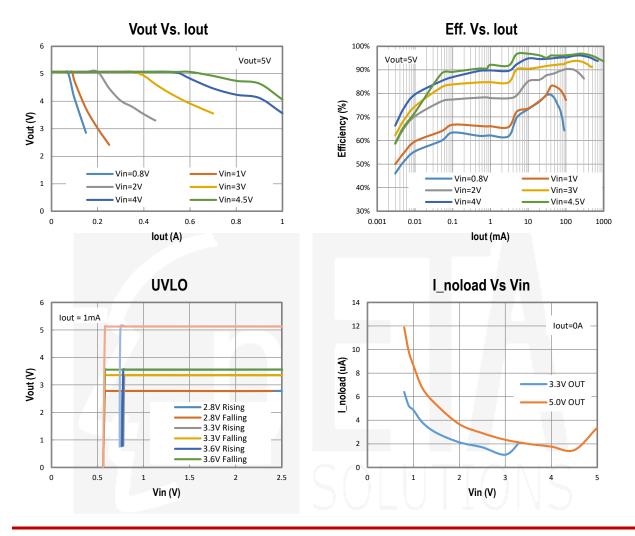



PIN DESCRIPTION


SOT23-6 PIN #	DFN2x2-6 PIN #	NAME	DESCRIPTION
1	2	OUT	Output pin. Bypass with a $4.7\mu F$ or larger ceramic capacitor closely between this pin and GND
2	1	GND	Ground Pin
3	4	EN	Enable pin for the IC. Drive this pin high to enable the part, low to disable.
4	6	IN	Input Supply Voltage. Bypass with a 4.7µF ceramic capacitor to GND
5	3	FB	Feedback Input. Add an external resistor divider from the OUT to FB and GND to set VOUT for adjustable output voltage. There is no FB pin for fixed voltage version. The pin is "Not Connected".
6	5	SW	Inductor Connection. Connect an inductor Between SW and the regulator output.

TYPICAL CHARACTERISTICS


(Typical values are at T_A = 25°C unless otherwise specified.)


Eff. Vs. lout

TYPICAL CHARACTERISTICS cont'd

(Typical values are at T_A = 25°C unless otherwise specified.)

APPLICATION INFORMATION

Loop Operation

ETA1064 is a high efficiency synchronous step-up converter with ultra-low quiescent current down to 1 μ A. It integrates a 250m Ω Low Side Main MOSFET and 160m Ω synchronous MOSFET. It uses a PWM current-mode control scheme. An error amplifier integrates error between the FB signal and the internal reference voltage. The output of the integrator is then compared to the sum of a current-sense signal and the slope compensation ramp. This operation generates a PWM signal that modulates the duty cycle of the power MOSFETs to achieve regulation for output voltage.

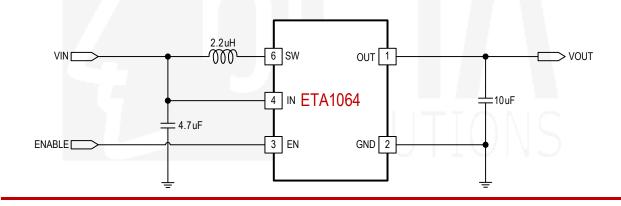
The peak current of the NMOS switch is also sensed to limit the maximum current flowing through the switch and the inductor. The typical peak current limit is set to 1A. An internal temperature sensor prevents the device from getting overheated in case of excessive power dissipation.

Ultra low current consumption at Light Load Operation

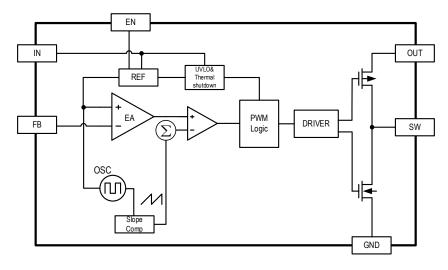
Traditionally, a fixed constant frequency PWM DC/DC regulator always switches even when the output load is small. When energy is shuffling back and forth through the power MOSFETs, power is lost due to the finite RDSONs of the

MOSFETs and parasitic capacitances. At light load, this loss is prominent and efficiency is therefore very low. ETA1064 employs a proprietary control scheme that improves efficiency in this situation by enabling the device into a power saving mode during light load and the no load quiescent current can be as low as 1µA.

Short-Circuit Protection

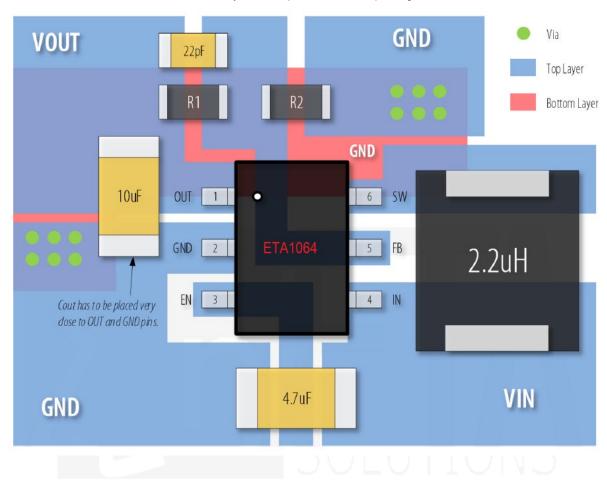

Unlike most step-up converters, the ETA1064 allows for short circuits on the output. In the event of a short circuit, the device first turns off the NMOS when the sensed current reaches the current limit. When OUT drops below IN, the device then enters a linear charge period with the current limited same as with the start-up period. In addition, the thermal shutdown circuits disable switching if the die temperature rises above 155°C.

Adjustable Output Voltage Setting with FB pin

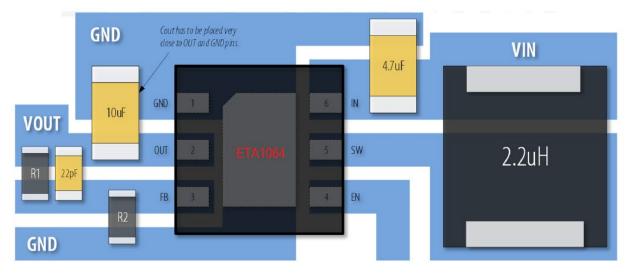

By adding a resistor divider at FB pin (R1 and R2 as shown in the circuit below), ETA1064 can be set to any voltage level less than 5V at output node. The R2 is recommended to be 2Mohm or less, which will add about 0.5uA or more at output. The output voltage is set by following equation:

$$Vout = \frac{R1 + R2}{R2} \times 1.11V$$

Application Circuit of Fixed Voltage Version

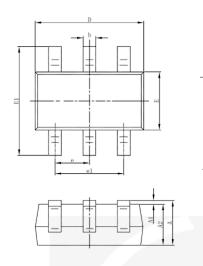


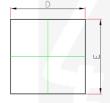
BLOCK DIAGRAM



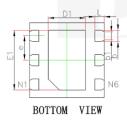
PCB GUIDELINES

PCB layout example for SOT23-6 package


PCB layout example for DFN2x2-6 package


PACKAGE OUTLINE

Package: SOT23-6


Dimensions		n Millimeters	Dimensions	s In Inches
Symbol	Min	Max	Min	Max
А	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
Е	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Package: DFN2x2-6

A1

TOP VIEW

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
	Min	Max	Min	Max	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A3	0.203REF.		0.008 REF.		
D	1.900	2.100	0.075	0.083	
E	1.900	2.100	0.075	0.083	
D1	0.900	1.100	0.035	0.043	
E1	1.500	1.700	0.059	0.067	
b	0.250	0.350	0.010	0.014	
b1	0.220 REF.		0.009 REF.		
е	0.650 BSC.		0.026 BSC.		
L	0.174	0.326	0.007	0.013	